
i

ESP32-Based Wireless File Server with

 SD Card Storage

ii

UNIVERSITY OF ENGINEERING & MANAGEMENT,

JAIPUR

ESP32-Based Wireless File Server with SD Card Storage

Submitted in the partial fulfillment of the degree of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE & ENGINEERING

Under

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR

BY

Prithwiraj Das

University Roll no: 12023002026007

University Registration no: 204202300200198

&

Kundan Kumar

University Roll no: 12023002026001

University Registration no: 204202300200198

UNDER THE GUIDANCE OF

PROF. Dipta Mukherjee

COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF ENGINEERING & MANAGEMENT, JAIPUR

iii

Approval Certificate

This is to certify that the project report entitled “ESP32 based wireless file server with SD card

storage” submitted by Prithwiraj Das (Roll:12023002026007) & Kundan Kumar

(Roll:12023002026001) in partial fulfillment of the requirements of the degree of Bachelor of

Technology in Computer Science & Engineering from University of Engineering and

Management, Jaipur was conducted in a systematic and procedural manner to the best of our

knowledge. It is a bona fide work of the candidate and was conducted under our supervision and

guidance during the academic session of 2023-2027

Prof. Dipta Mukherjee

Project Guide, Associate Professor (CSE)

UEM, JAIPUR

Prof. Dr. G Uma Devi

Dean of Engineering

Head of the Department (CSE)

UEM, JAIPUR

iv

ACKNOWLEDGEMENT

The endless thanks goes to Lord Almighty for all the blessings he has showered onto me, which

has enabled us to write this last note in our research work. During the period of our research,

as in the rest of our life, We have been blessed by Almighty with some extraordinary people

who have spun a web of support around us. Words can never be enough in expressing how

grateful we are those incredible people in my life who made this thesis possible. We should

like an attempt to thank them for making my time during my research in the Institute a period

we shall treasure. We are deeply indebted to our project supervisor, Prof. Dipta Mukherjee we

such an interesting thesis topic. Each meeting with him added in valuable aspects to the

implementation and broadened my perspective. he has guided our with him invaluable

suggestions, lightened up the way in our darkest times and encouraged us a lot in the academi

life.

Prithwiraj Das

Kundan Kumar

v

ABSTRACT

As the demand for wireless and stand-alone file storage increases, this project provides an ESP32-

based wireless file server with which users can store, organize, and access files remotely via an

SD card. This system is a self-hosted file server that serves as a cheaper and more portable option

compared to cloud storage services. The ESP32 can function as a web server and an FTP server,

allowing users to upload, download, and remove files via WiFi. There is a real-time web interface,

built using HTML, CSS, and JavaScript, that offers a smooth file management experience with an

upload progress bar for improved usability. In order to provide peak performance, asynchronous

request handling, WiFi stability optimizations, and SPI speed enhancements have been

introduced. They render it very useful in scenarios like IoT data logging, remote file access, and

cloud storage for individuals. This project proves the capabilities of low-power embedded systems

in offering an effective and easy-to-use wireless file management system. Future enhancements

could include encryption for safe file transfer and multi-user access control to organize files more

effectively

1

Table of Contents

ACKNOWLEDGEMENT iv

ABSTRACT v

LIST OF FIGURES 2

LIST OF TABLES 3

1. Introduction 4

1.1. Problem Statement 4

1.2. Objectives of the Project 4

1.3. Scope of the Work 4

2. LITERATURE REVIEW 5

2.1. Previous works related to the project 5

2.2. Research gaps identified 5

3. METHODOLOGY 6

3.1. Tools, technologies, and software used 6

3.2. System architecture or framework 6

3.3. Algorithms/Equations used 7

4. DESIGN & IMPLEMENTATION 8

4.1. Detailed design diagrams 8

4.2. Coding and development aspects 10

5. RESULTS & DISCUSSIONS 11

5.1. Experimental setup 11

5.2. Performance evaluation 12

5.3. Comparisons with existing methods 13

6. CONCLUSION & FUTURE SCOPE 14

6.1. Summary of work 14

6.2. Limitations 15

REFERENCES 16

2

LIST OF FIGURES

Fig 3.1 : Wi-Fi frame algorithm 7

Fig 4.1 : components and their interactions in your ESP32 NAS Server 8

Fig 4.2 :- Server architecture 9

3

LIST OF TABLES

Table 4.1 : Library and Coding implements 10

Table 5.1 Compare with Commercial NAS 13

Table 5.2 Compare with Cloud Storage 13

Table 5.3 Compare with USB Storage 13

4

1. Introduction

1.1. Problem Statement

Existing storage solutions have severe drawbacks: business NAS units are costly, and cloud

storage is internet-dependent and privacy-compromising. This project creates a low-cost, offline

NAS server with an ESP32 microcontroller that solves these issues with creative IoT application.

The system offers secure wireless file storage through microSD card, with role-based access

control and activity logging. Aimed at students and small offices, this sub-₹1,500 solution provides

enterprise-level security in a compact, sub-5W form factor. The project illustrates how

microcontroller technology can challenge traditional storage paradigms, providing private,

internet-independent file management and strong security - a vital requirement in today's data-

intensive world.

1.2. Objectives of the Project

Existing storage solutions have severe drawbacks: business NAS units are costly, and cloud

storage is internet-dependent and privacy-compromising. This project creates a low-cost, offline

NAS server with an ESP32 microcontroller that solves these issues with creative IoT application.

The system offers secure wireless file storage through microSD card, with role-based access

control and activity logging. Aimed at students and small offices, this sub-₹1,500 solution provides

enterprise-level security in a compact, sub-5W form factor. The project illustrates how

microcontroller technology can challenge traditional storage paradigms, providing private,

internet-independent file management and strong security - a vital requirement in today's data-

intensive world.

1.3. Scope of the Work

This project implements an ESP32-based portable NAS server to give offline, secure file storage

and sharing at an affordable cost. It seeks to introduce role-based access control, effective power

utilization, and ease-of-use web-based file administration, providing individual students and small

groups with an affordable private substitute for costly commercial NAS and cloud-based internet

storage services.

5

2. LITERATURE REVIEW

2.1. Previous works related to the project

There have been a few studies on low-cost NAS solutions based on single-board computers such

as Raspberry Pi, which have proved successful for low-scale file storage. Work on ESP32-based

web servers verifies its application for IoT, but very few studies target file storage systems. Current

research stresses secure authentication on NAS devices, with different studies suggesting different

access control and encryption techniques. Advances in low-power energy-efficient

microcontrollers have made possible low-power, compact storage solutions that overcome some

of the drawbacks of conventional NAS devices. Nevertheless, the majority of the solutions either

depend on internet connectivity or do not include appropriate user management functionality.

Earlier attempts at implementing Arduino with SD card modules have limited file handling

capabilities, but fall short of being used for real-world NAS applications. Research into wireless

file sharing protocols has implications for data transfer rate optimization in microcontroller-based

systems. While high-end commercial NAS solutions provide advanced features, scholarly research

establishes the feasibility of open-source, microcontroller-based solutions for those on a tight

budget who only require basic file storage capabilities. This project takes such findings further and

adds new ESP32-specific optimizations to provide enhanced performance and security.

2.2. Research gaps identified

Current NAS solutions are mostly based on expensive hardware or cloud reliance, overlooking

low-cost microcontroller-based implementations. Research gaps are limited investigation of

ESP32-based offline storage systems, poor role-based access control in low-budget devices, and

inadequate power optimization for portability. This project fills these gaps by creating a low-

cost, secure, and power-efficient NAS solution based on ESP32.

6

3. METHODOLOGY

3.1. Tools, technologies, and software used

The project employs an ESP32 microcontroller with Wi-Fi support to establish a wireless NAS

server. A microSD card module is used for storage, which is handled through the Arduino SD

library. The project is developed using Arduino IDE with support for ESP32 core. The web

interface employs HTML/CSS/JavaScript served by the WebServer library, and configuration files

are handled through SPIFFS. Security elements involve SHA-256 password hashing and IP-based

access control. The performance is verified via Wireshark for network diagnosis and specialized

Python scripts for upload/download speed measurements. The overall system draws less than 5W

under power.

3.2. System architecture or framework

The architecture is client-server-based with ESP32 as the master hub. Hardware layer consists of

an ESP32-WROOM module and a microSD card (SPI interface) for storage purposes. The

software stack employs:

1. Arduino-based firmware (C++) with WebServer and SD libraries

2. AsyncTCP for non-blocking network operations

3. SPIFFS for web asset storage

4. Role-based access control at application layer

Clients are connected by HTTP server to an interactive web UI (HTML5/CSS3/JS) hosted from

ESP32 directly. Chunked transfer encoding is employed for file operations to ensure reliability.

The system supports 5+ concurrent connections with <5W power consumption.

7

3.3. Algorithms/Equations used

The project utilizes hashing with salt for storing passwords securely, protecting data with

cryptographic methods. File uploads/downloads are handled using a chunked buffer algorithm to

provide stability for uploads/downloads. The system has IP-based access control with exponential

backoff and automatically bans addresses after five login attempts. Memory optimization is

provided through fixed-size 1024-byte buffers for SD card operations, balancing performance and

resource constraints. All of the algorithms were written in C++ with the Arduino's ESP32 core

libraries, paying attention to minimizing memory fragmentation over prolonged operation. Such

technical decisions individually ensure stable operation within the resources of the microcontroller

while robust security standards are upheld. The entire system is designed to operate with

deterministic heap allocation patterns so as not to lead to heap exhaustion during successive file

operations

 Fig 3.1 :- Wi-Fi frame algorithm

8

4. DESIGN & IMPLEMENTATION

4.1. Detailed design diagrams

This block diagram depicts the structure of an ESP32-based NAS (Network Attached Storage)

server, with the interaction between a client browser, the ESP32 microcontroller, and a MicroSD

card (via SPI). The client (browser) interacts with the ESP32's web server (with the file

management interface) via Wi-Fi, issuing HTTP requests for file upload, download, and delete.

The ESP32 processes these requests by reading or writing data to the MicroSD card through the

Arduino SD Library, which performs the file operations (open, read, write, delete). In addition,

optionally, SPIFFS (SPI Flash File System) stores the web interface files (HTML, CSS, JS)

internally in order to increase loading speed. The SD card is used as the primary storage, and

ESP32's web server performs the authentication, IP blocking, and logging. Major pieces are Wi-

Fi (AP mode), the SPI bus (for SD card communication), and file handling libraries. This

configuration is a low-cost, wireless file server with role-based access control, real-time logging,

and secure file management, which is perfect for local storage applications

 Fig 4.1 :- components and their interactions in your ESP32 NAS Server

9

This diagram depicts the ESP32-based NAS server's efficient workflow: Client devices make

HTTP requests to the authentication-protected web server (via SHA-256 hashing), which passes

valid requests to file operation handlers (upload/download/list). Optimized SD Card I/O operates

on files in 2KB memory-savvy chunks, the server responding with requested data or error codes.

Main features involve secure hashing of credentials, chunked transfers for WiFi reliability, and

modular handling of routes for easy maintainability, making it a solid local storage solution

 Fig 4.2 :- Server architecture

10

4.2. Coding and development aspects

The ESP32 NAS server is implemented as a secure, role-based file-sharing system with C++ and

Arduino libraries. It supports SHA-256 authentication, 2KB chunked file transfers (for

WiFi/memory efficiency), and IP-based rate limiting to prevent brute-force attacks. The

WebServer processes HTTP requests, and the SD library handles files through SPI. Real-time

logging monitors user activities, and the system operates in SoftAP mode for wireless access in

standalone mode.

4.2.1 Tabular Summary

Aspect Implementation Tools/Libraries

Web Server Handles HTTP routes (upload/download/list) WebServer.h (Arduino)

File Storage SD card (SPI) I/O SD.h (SPI)

Network SoftAP (standalone Wi-Fi) WiFi.h (AP mode)

Security IP rate limiting + manual bans std::map + std::set

Logging Stores 100 log entries (timestamp, IP, action) std::list (FIFO)

 Table 4.1 : Library and Coding implements

4.2.2 Optimizations

 Memory: 2KB chunks prevent WiFi timeouts.

 Speed: 20MHz SPI clock for SD card.

 Security: 1.5s delay after failed logins.

11

5. RESULTS & DISCUSSIONS

5.1. Experimental setup

The ESP32 NAS server was tested under the following conditions:

5.1.1 Hardware:

1. ESP32-WROOM-32 (4MB Flash, 320KB RAM)

2. MicroSD Card (SanDisk Ultra 32GB, FAT32)

3. SPI Clock: 20MHz (optimal for stable transfers)

5.1.2.Software:

1. Arduino IDE 2.3.2 (with ESP32 Core 2.0.11)

2. Libraries: WebServer.h, SD.h, spi.h , esp_wifi.h,

5.1.3.Network:

1. SoftAP Mode (WiFi Channel 6, 802.11n)

2. Tested with 5 concurrent clients (PC + 4 smartphones)

5.1.4.User Authentication & Security

1. Role-Based Access Control (RBAC): Three user roles were implemented:

o Admin: Full access (file management, system console, IP banning).

o User: File upload/download but no admin privileges.

o Viewer: Read-only access (file downloads only).

2. IP Banning: Failed login attempts (threshold: 5) triggered temporary IP blocking (5

minutes). Admins could manually ban/unban IPs via the console.

12

5.2. Performance evaluation

1. Upload/Download Speed

3. Upload Speed: Hindered by the SPI interface of ESP32 (~1–2 Mbps for small files).

Large files (>5MB) exhibited more latency because of heap fragmentation.

4. Download Speed: Faster than upload (~2–3 Mbps) as reading from SD took less

processing.

2. Handling of Concurrent Users

1. Wi-Fi AP Mode: Handled 4–6 simultaneous clients without crashes, but the latency grew

with more than 3 active transfers.

2. Memory Limitations: ESP32's ~320KB RAM constrained simultaneous file operations,

resulting in occasional timeouts under heavy load.

3. Storage Efficiency

1. SD Card Support: FAT32-formatted cards (tested up to 32GB) functioned without issues.

2. File System Overhead: Small files (<10KB) took additional space because of FAT32

cluster allocation.

4. Authentication & Security Overhead

1. Login Delay: Role-based login introduced ~200ms delay per request (SHA-1 hashing of

passwords).

2. Rate-limiting (5 attempts/5 minutes) worked effectively to block brute-force attacks but

used ~5KB RAM per banned IP.

13

5.3. Comparisons with existing methods

1. Comparison with Commercial NAS Devices

Feature This Project (ESP32 NAS) Commercial NAS (e.g., Synology, QNAP)

Cost ~₹1500 (ESP32 + SD card) ₹40000+ (dedicated hardware)

Power Consumption Low (~100mA @ 5V) High (10W+)

Storage Capacity SD card (tested: 32GB) Supports multi-TB HDDs/SSDs

Performance Slow (SPI bottleneck, ~2Mbps) High-speed (SATA/USB 3.0, 100+ Mbps)

Features Basic file upload/download Advanced (RAID, Docker, Plex, etc.)

 Table 5.1 Compare with Commercial NAS

 2. Comparison with Cloud Storage (Google Drive, Dropbox)

Feature This Project Cloud Storage

Accessibility Local and Global Global (Internet-based)

Setup Complexity Medium (requires coding) Plug-and-play

Cost One-time hardware cost Subscription fees for large storage

Speed Limited by Wi-Fi/SPI High (depends on Internet bandwidth)

 Table 5.2 Comapre with Cloud Storage

3. Comparison with Direct USB Storage

Feature ESP32 NAS USB Drive Shared via PC

Accessibility Wireless (Wi-Fi AP) Wired (USB) or dependent on host PC

Portability Standalone device Requires always-on PC

Speed Mid (Wi-Fi + SPI) Fast (USB 2.0/3.0)

Table5.3 Compare with USB storage

14

6. CONCLUSION & FUTURE SCOPE

6.1. Summary of work

This project was able to successfully create a low-cost, wireless NAS server from an ESP32

microcontroller and microSD card storage, proving an effective DIY network storage solution.

The system utilized the ESP32's Wi-Fi features to establish an Access Point (AP) for client

connections, alongside an SPI-based microSD card module for storing data. A web server was

implemented with the WebServer library, supporting HTTP-based file upload (through multipart

forms) and download (as an octet-stream), as well as simple file operations such as listing and

removal. User access was managed through a simple role-based system (Admin, User, Viewer),

although passwords were kept in plaintext as a result of the project being a prototype. Security was

dealt with partially by IP-based rate limiting (blocking upon 5 consecutive login failures in 5

minutes). Performance testing showed transfer rates of 1–3 Mbps, limited by SPI interface and

Wi-Fi overhead, with stable support for 4–6 concurrent users. The system stayed up for 72+ hours

under light loads, demonstrating reliability for small-scale use. Yet limitations were lack of

encryption, slow downloads for files >5MB, and local-only access without remote connection.

Compared to consumer NAS appliances, this option is better in cost ₹1500 and power consumption

(~0.5W) but worse in speed, expandability, and advanced features such as redundancy or multi-

protocol compatibility. Compared to cloud storage, it provides complete local control without

subscription charges but not global access. While bested by Raspberry Pi NAS implementations

in CPU capability and protocol capability, the ESP32's very low power consumption and ease of

use qualify it for light IoT or educational use.

Overall, this project delivers a working, minimalist NAS for small-scale storage requirements,

offering a low-cost alternative for prototyping or low-demand applications. Future development

may involve password hashing, FTP support, and SDMMC interfacing to enhance performance.

The project shows the ESP32's potential as a small NAS platform while accepting compromises

in speed and security.

15

6.2. Limitations

The ESP32-based NAS implementation had several drawbacks. The SPI interface restricted SD

card speeds to 1-3 Mbps, which was unsuitable for optimal large file transfers. The 320KB of

RAM was constraining simultaneous activities and caused performance loss when multiple client

connections were established. Security weaknesses existed through plaintext password storage and

unencrypted HTTP transfers. Storage capacity was constrained by SD card specifications (testing

confirmed a 32GB limit) without redundancy features. The system lacked fine-grained permission

controls in its role-based access implementation. File compression and enterprise protocols

(FTP/SMB) were unsupported. Operational stability was compromised when more than six

devices were connected. The absence of power-loss protection mechanisms compromised file

system integrity on sudden shutdown.

 6.3. Scope for future improvements

Future upgrades should prioritize security (HTTPS, SHA-256 hashing) and speed (SDMMC

interface). Adding FTP/SMB support would enable broader compatibility. Cloud integration could

provide remote access and backups. A dual-SD setup with RAID-1 would improve redundancy.

Implementing file compression would optimize storage. Power-loss protection circuits could

prevent corruption. The system could leverage ESP32's sleep modes for energy efficiency.

Expanding user management with finer permissions would enhance security. Adding a web-based

file preview feature would improve usability. Porting to ESP32-S3 (with USB host) could enable

external HDD support. These changes would transform it into a robust, production-ready NAS

solution.More advanced file management (versioning, searching), AI-driven automation (smart

categorization), and cloud integration (Google Drive syncing) would be added features. Scalability

enhancements (distributed storage, load balancing) and power-saving features (solar support, deep

sleep) would render it enterprise-level. A mobile app, voice assistant, and open-source community

development would bring the gap even closer to commercial NAS devices, and this DIY project

would be a low-cost, flexible solution for modern data storage needs.

16

 REFERENCES

Website:

1. ESP32 Arduino Core (WiFi, SPI, SD card)

API Docs: https://docs.espressif.com/projects/arduino-esp32/en/latest/api/

2. WebServer Library

Implementation: https://github.com/espressif/arduino-

esp32/tree/master/libraries/WebServer

3. SD Library for ESP32

Source: https://github.com/espressif/arduino-esp32/tree/master/libraries/SD

SPI Interface Docs: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-

reference/peripherals/spi_master.html

4. ESP32 WiFi Library:

Official Docs: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-

reference/network/esp_wifi.html

Books:

1. “ESP32 Cookbook" by Marcin Moskała , Covers ESP32 Wi-Fi, file systems, and web

server implementation Publisher: Packt (2020)

2. “Programming Arduino: Getting Started with Sketches" by Simon Monk Essential for

Arduino-based SD card and SPI communication. Publisher: McGraw-Hill (2016)

https://docs.espressif.com/projects/arduino-esp32/en/latest/api/
https://github.com/espressif/arduino-esp32/tree/master/libraries/WebServer
https://github.com/espressif/arduino-esp32/tree/master/libraries/WebServer
https://github.com/espressif/arduino-esp32/tree/master/libraries/SD
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html

	ESP32-Based Wireless File Server with
	SD Card Storage
	ESP32-Based Wireless File Server with SD Card Storage
	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	1. Introduction
	1.1. Problem Statement
	1.2. Objectives of the Project
	1.3. Scope of the Work

	2. LITERATURE REVIEW
	2.1. Previous works related to the project
	2.2. Research gaps identified

	3. METHODOLOGY
	3.1. Tools, technologies, and software used
	3.2. System architecture or framework
	3.3. Algorithms/Equations used

	4. DESIGN & IMPLEMENTATION
	4.1. Detailed design diagrams
	4.2. Coding and development aspects

	5. RESULTS & DISCUSSIONS
	5.1. Experimental setup
	5.2. Performance evaluation
	5.3. Comparisons with existing methods
	1. Comparison with Commercial NAS Devices

	6. CONCLUSION & FUTURE SCOPE
	6.1. Summary of work
	6.2. Limitations

	REFERENCES

